### ON.LAB

# Accelerate SDN Adoption with Open Source SDN Control Plane

with a difference

Guru Parulkar parulkar@stanford.edu

Thinking influenced by Nick McKeown, Scott Shenker, and Colleagues at ON.Lab, Stanford

I am responsible for any faults

Network operators love SDN

They want to adopt it

Still they are too slow to deploy it

Why?

# Why Network Operators Slow to Deploy SDN?

SDN needs to mature

Network operators increasingly dependent on leading incumbent vendors

### **Critical SDN Components**

- (Commodity) OF/SDN optimized forwarding devices (switches)
  - Expect silicon and (white box) vendors to step up to deliver

Not focus of this talk

- Distributed SDN Control Plane
  - Scale-out, HA, north bound API, performance
- Compelling use cases

Open Source ONOS Project

with a difference

# Every disruptive technology takes time to mature

But SDN has its own challenges due to how the network industry works

### **Network Operators and Vendors**

Vendors

Leading
Incumbents

Depend on Vendors

Vendors

Design, build, & Profitability under

Own the market

Out sourced too much to vendors

Depend on Vendors

Profitability under pressure

Leading incumbents not likely to deliver "real SDN" any time soon Surprised?

## Incumbents' Approach to SDN

- ■Phase 1
  - Incumbents ignored SDN
- ■Phase 2
  - Incumbents actively played SDN down and in denial
- ■Phase 3
  - Incumbents "embrace" SDN; claim to be SDN leaders
  - Incumbents redefine SDN to preserve their legacy

### Incumbents' Approach to Preserving Legacy



### What is Wrong with Incumbents Approach?



### Network Operators' Challenge



How can Network Operators realize SDN value?

#### How to help network operators realize SDN?

#### **Technology Building Blocks**

- Commodity OF/SDN optimized forwarding devices (switches)
- Distributed SDN Control Plane

Compelling use cases

Open Source ONOS Project

With Network Operators and Vendors\*

**Vendors\*: Ones that are willing to challenge the status quo** 

To break network operators dependence on a few vendors and create more choices for operators

# Open Source ONOS Project

Network Operators
Carriers/Enterprises

with a difference

Vendors\*

Team with
Expertise in
SDN, Distributed
Sys, Use cases,
Open Source

Open Source SDN Control Plane Features, Functions, Performance

Compelling Use Cases

**Demonstrations** 

Trial Deployments

SDN Researchers Innovators



# **ON.LAB**

#### ONOS:

# An Open Source Distributed Network OS

ON.Lab Team

# Open Network OS (ONOS): Focus (Started in Summer 2012)



# ONOS High Level Architecture

Distributed Network Graph/State

Network Graph
Eventually consistent

Titan Graph DB

Cassandra In-Memory DHT

Coordination

Distributed Registry Strongly Consistent

Instance 1



Zookeeper

Scale-out

OpenFlow Controller+

OpenFlow Controller+

Instance 2

OpenFlow Controller+

Instance 3





#### **Prior Work**

**ONIX** 

Distributed control platform for large-scale networks

ONOS design influenced by ONIX

ONIX: closed source; datacenter + virtualization focus

Other Work

Helios (NEC), Midonet (Midokura), Hyperflow, Maestro, Kandoo, ...

NOX, POX, Beacon, Floodlight, Trema controllers

Community needs an open source distributed SDN OS

# Network Graph: Switches

**Network Graph: Switches** 





# Network Graph: Link Discovery



# Network Graph: End Devices







# Path Computation with Network Graph



# Network Graph and Flow Manager



# Demo: ONOS for Service Provider WAN ONS, April 2013



#### Lessons Learned

- Scale-out design with HA is important
- Network graph is a promising north-bound abstraction
- Achieving performance with off-the-shelf open source components difficult
- There are many systems challenges
  - Distributed data store and state synchronization
  - Choice of consistency models for different network state
  - CAP theorem implications
  - Efficient and low latency events/notifications functionality
  - Performance: targets and how to achieve them

### ONOS Work In Progress



Low-latency distributed data store

**Events, callbacks and publish/subscribe API** 

**Expand graph abstraction for more types of network state** 



Control functions: intra-domain & inter-domain routing Example use cases: traffic engineering, dynamic virtual networks on demand, ...



Work with key partners: service providers, a few vendors
Support deployments in R&E networks and trial deployments
with network operators

### Being deployed in R&E Networks

Learn more at http://onlab.us/tools.html

**ONOS Next Phase** 

# Open Source ONOS Project

Network Operators
Carriers/Enterprises

with a difference

Vendors\*

Team with
Expertise in
SDN, Distributed
Sys, Use cases,
Open Source

Open Source SDN Control Plane Features, Functions, Performance

Compelling Use Cases

**Demonstrations** 

Trial Deployments

SDN Researchers Innovators

### **Expected Results**



Break this dependency Create more choices

#### **Network Operators**

- Address hard technology problems
- Help create solutions that meet your requirements
- Create SDN expertise within your org

**Accelerate SDN adoption** 

#### **Vendors\***

- Address hard technology problems
- Work closely with customers
- Create solutions that customers would deploy

Reduced time to market; grow market share

# **THANK YOU!**

### How to Accelerate Adoption of SDN?

#### **Technology Building Blocks**

- Commodity OF/SDN optimized forwarding devices (switches)
- Distributed SDN Control Plane

Compelling use cases

Open Source ONOS Project

With Network Operators and vendors that are willing to challenge the status quo

To break network operators dependence on a few vendors and create choices ...