
Introduction to
Cilium from Telco
and On-premise
Perspective
Speaker: Yutaro Hayakawa

Self Introduction

● Yutaro Hayakawa (@YutaroHayakawa)
● Software Engineer at Isovalent
● Dataplane, enterprise networking, etc…
● ex-LINE Verda Network Development Team

Isovalent

● The vendor company provides networking,
security and observability solutions for
Kubernetes

● The company behind Cilium, Hubble, Tetragon,
and more…

● Puts eBPF as a company’s key technology

VMs

Trivia: Isovalent and SDN

Thomas
Graf
Co-founder & CTO

Dan
Wendlandt
Co-founder & CEO

Martin
Casado
Creator of SDN

● ex-RedHat, Cisco
● Long-term Linux kernel

development leader
● OVS core contributor

● ex-Nicira, VMWare
● The first PM of Nicira

NVP and OVS
● PM of VMWare NSX

● Cofounder & CTO of
Nicira

● General partner at a16z
● Serves on the board of

Isovalent from a16z

VMs

eBPF

● A way to implement Linux kernel extension
● Safety guarantee by static verification
● Backward compatibility guarantee

○ No “upstream to avoid breakage”
○ No mainline ⇒ distribution gap period
○ Can do anything specific to your business

inside the kernel
● Dramatically speed-ups kernel extension

programming/delivery/maintenance cycle

https://ebpf.io/

Originally, created by…

https://ebpf.io/

VMs

Cilium

● CNI, Load Balancer, Firewall, Network
Observability, Multi-cluster Networking,
Service Mesh, and more…

● Uses eBPF for DPlane implementation
○ Easy to extend, rapid development cycle https://cilium.io

https://cilium.io

● Traditional Infrastructure => Cloud native infrastructure transition
○ Static IP vs Dynamic IP
○ Egress Gateway, FQDN-based Network Policy

● Integrating Cilium into DC network
○ How to make k8s network accessible from DC network?
○ BGP Integration

● Integrating Cilium into SRv6 L3 VPN
○ How to make k8s network accessible over VPN?
○ BGP Integration with SRv6 VPN

Cilium from On-prem and Telco Perspective

● Routes all IPv4 connections originating
from pods and destined to specific
cluster-external CIDRs through particular
nodes

● Use fixed source IP address for egressing
the cluster

Egress Gateway cluster

worker node (10.1.0.1) worker node (10.1.0.2)

cluster

worker node (10.1.0.1) gateway node
(GW IP: 10.2.0.1)

SNAT => Src: 10.1.0.1 SNAT => Src: 10.1.0.2

Without Egress Gateway

With Egress Gateway

SNAT => Src: 10.2.0.1

Egress Gateway: Why and How

● Filtering egress traffic based on the
FQDN (or FQDN pattern) instead of IP
addresses

FQDN-based Network Policy

cluster

worker node

service1.internal

service2.internal❌

FQDN-based Network Policy Implementation: L7 DNS Blocking

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

service1.internal

● How to allow service1.internal?
● Intercept DNS query from Pod with transparent proxy
● Transparent proxy checks the query and if matches to the allow policy

✅

FQDN-based Network Policy Implementation: L7 DNS Blocking

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

service2.internal ❌

● How to deny service2.internal?
● When the query didn’t match to the allow policy, transparent proxy returns error

FQDN-based Network Policy: Dynamic L3 Policy Generation

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

L3
Deny

All

❌

● How to deny service2.internal

FQDN-based Network Policy: Dynamic L3 Policy Generation

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

service1.internal

L3
Deny

All

● How to allow service1.internal

FQDN-based Network Policy: Dynamic L3 Policy Generation

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

service1.internal. IN A 10.0.0.1

L3
Deny

All

● How to allow service1.internal

FQDN-based Network Policy: Dynamic L3 Policy Generation

worker node

Transparent Proxy

DNS
Server

service1.internal
(10.0.0.1)

service2.internal
(10.0.0.2)

L3
Deny

AllAllow 10.0.0.1

Insert

service1.internal. IN A 10.0.0.1

✅

● The transparent proxy is TTL-aware

● Cilium speaks BGP to advertise k8s
network prefixes (e.g. PodCIDR, Service
VIP, Egress Gateway IP, etc…)

BGP Integration

cluster

worker node

ToR
Switch

PodCIDR: 10.0.0.0/24
NodeIP: 192.168.0.1

BGP IPv4 Unicast
10.0.0.0/24 via
192.168.0.1

● Cilium speaks BGP to advertise PodCIDR over SRv6 L3 VPN

● Cilium implements eBPF-based SRv6 encap/decap and VRF DPlane

● Telco use case: k8s + Cilium as an SRv6-aware MEC platform

SRv6 L3 VPN DPlane + BGP Control Plane

SRv6 L3 VPN DPlane + BGP Control Plane

cluster

worker node

PodCIDR: 10.0.0.0/24 Route Reflector

External PE

VRF
(SID: a::1)

VRF
(SID: a::2)

VRF

VRF

CE1

CE2

VPNv4 NLRI +
PrefixSID Attr

10.0.0.0/24 SID a::1
10.0.0.0/24 SID a::2

BGP
Speaker

SRv6 Domain

● We’re use case driven community, so
don’t hesitate to file issues even if it is
niche

● We are hiring

Last Words

Join the Cilium community
https://cilium.io/get-involved/

Join the Isovalent
https://isovalent.com/careers/

https://cilium.io/get-involved/
https://isovalent.com/careers/

Thank you!

eBPF - Kubernetes Networking Use Cases

User

Kernel
Stack

Device

Socket

veth veth
physical dev

tunnel dev

cgroup

tc tc tc

XDP

Pod NS Host NS

BPF Maps

Custom
CPlane

Kernel FIB

Any Routing Daemon
(FRR, Bird, GoBGP…)

