
2019

www.netcope.com

Netcope P4 for Intel PAC N3000

Netcope Technologies

● Primary focus on FPGA-based dataplane

acceleration in P4 language

■ P4 programmability for Intel FPGAs

● Sites
■ San Jose, California

■ Brno, Czechia

● FPGA Expertise

■ Over 15 years

■ Close cooperation with Intel
Brno, Czechia, Netcope HQ

Become flexible with Netcope P4
- paradigm shift in FPGA programming.

P4 Gains Broad Networking Industry Adoption, Joins Open Networking Foundation (ONF) and Linux

Foundation (LF) to Accelerate Next Phase of Growth and Innovation
P4 continues to gain rapid adoption and support across the networking industry. P4.org currently has more than 100 member

organizations spanning industry and academia and continues to grow, adding new members and developers.

P4 language

4

“P4 and programmable forwarding

planes are examples of cutting-edge

technologies we are using in our new

network architecture design.”

“As one of the creators of P4, Google is

proud to see the rapid adoption of P4

across the networking industry.”

“Our whole networking industry stands to benefit from a language like

P4 that unambiguously specifies forwarding behaviour, with dividends

paid in software developer productivity, hardware interoperability, and

furthering of open systems and customer choice.”

Source: https://www.prnewswire.com/news-releases/p4-gains-broad-networking-industry-adoption-joins-open-networking-foundation-onf-and-linux-foundation-lf-to-accelerate-next-phase-of-growth-and-innovation-300615320.html

Tom Bie

VP Technology &

Engineering

Tom Edsall

SVP and CTO

Data Center Networking

Amin Vahdat

Engineering Fellow, Vice President

and Technical Lead for Networking

P4 Language
Domain specific language specialised in

network data forwarding

● Flexible protocol stack- Indepence of network protocols.

Traffic processing described with a custom program

● Target Independence - Suitable for various architectures such

as SW, ASICs, NPUs, FPGAs

● Field reconfigurability - Change of behaviour after deployment

P4 Language Benefits

● Lowering entry barriers for new player in the industry

● Easy to use

● Suitable for network architects and network engineers

Netcope P4

Netcope P4 Cloud is a web service that

takes P4 code (packet processing program)

as an input and generates two possible

outputs:

● Bitstream - For a set of supported platforms customer can

directly compile final bitstream, e.g Intel PAC N3000

acceleration card.

● Netlist - This output enables the customer to customize the

design by adding additional 3rd party IP before final bitstream

compilation. Requires customer or 3rd party to supply board

support package.

Netcope P4 allows FPGAs to be

programmed using the open standard P4

language

■ Enables network architects / admins
to manage network data plane

■ Cloud-based tool to generate binary
configuration from P4 to FPGA

■ Shortens the development cycle from
months to days

FPGAs becoming standard due to flexibility

and performance. Difficult to program

■ FPGA-based smart NICs are
becoming commodity

■ Large need by mass market for
easy to use development tools

■ Netcope has partnerships with
key smart NIC vendors

■ Netcope P4 brings the power of
FPGAs to network engineers

NFV Server

Edge
Computing

5G
Infrastructure

Low
Latency

High
Bandwidth

High
Reliability

FPGA
Smart NIC

Netcope P4 Cloud empowers
network infrastructure to achieve

Data Center

Netcope
P4 Cloud

Netcope P4 solves network performance bottlenecks

FPGAs have the potential to be programmed to suit needs of network engineers, Netcope P4 enables this

Growth in the use of FPGAs Using Netcope to program FPGAs

8

Hand-optimized RTL

3rd party IP

Compile

FPGA firmware

Firmware module

Highly efficient
approach

Extensible
IP delivery platform

To be integrated
into target platform

Ready to run on different hardware targets

256 or 512 bit data width at 200
MHz (40 or 100 Gbps)

Single packet per clock cycle

Web GUI
User P4 code input

Netcope P4 - Product Overview

Netcope P4 unlocks new applications and use cases for FPGAs at the telco edge

P4 Development Cycle (5 days, 390 lines of code*)

HDL Development Cycle (52 days, 10k+ lines of code*)

Total 5 days, >10x improvement

Extensible code, 390 lines, >80x improvement

● Problem analysis: 1 day

● Code Ethernet and IPv6 parser: 10 days

● Code very simple match table: 6 days

● Code single-purpose packet editor: 8 days

● Simulation: 5 days

● Problem analysis: 1 day

● Code and test P4 code: 1 day

● Build firmware from P4: 4 hours (1 day)

● Build firmware, meet timing: 5 days

● Code API: 6 days

● Performance and conformance

testing in the hw: 1 day

● Bug Fixing: 10 days

● Performance and conformance testing in the

hardware: 1 day

● Bug Fixing: 1 day

(* 36 185 lines of VHDL generated by Netcope P4 compiler internally, not including existing library of standard modules, FIFOs etc.)

Netcope P4 - Value proposition for SRv6

P4 development cycle can be leveraged to cut costs and improve speed

Availability Cost

$ $ $

HDL developers are rare/difficult to
find and more expensive

Availability Cost

$ $ $

There are more software
developers available and for a lower

cost

9

Netcope P4 availability

Bitstream Netlists (IP core)

Intel PAC N3000 Intel FPGA Chips

Intel Arria 10 Arria 10

4x25G, 2x2x25G, 8×10G Stratix 10

● First Intel Branded PAC card for NFV

● Intel built and validated

● 8x10G / 2x2x25G / 4x25G Network

● PCIe Gen3x16 Host

● 75W Estimated, passive cooled

● FHHL, single slot

● 8GB DDR, 144Mb QDR

● 2 x 40G Fortville NICs

Intel PAC N3000

Netcope P4 - segments and use-cases

● Telco Gateways - vBNG and vEPC / 5GC

■ A core of wired / wireless mobile network

■ Trend in separation of control plane and data plane

■ Data plane accelerated by FPGAs to serve more subscribers

● NFVi - Segment Routing

■ A source-routing architecture that seeks the right balance between distributed
intelligence and centralized optimization

■ Enables high resilience, low latency, scalability and centralized traffic engineering
■ Segment routing function offload to allow CPU core utilisation by virtual functions

vBNG and vEPC on Intel PAC N3000

● Dataplane functions written in P4 language
■ Components of vBNG / vEPC dataplane are offloaded to Intel PAC N3000

○ Encapsulation / Decapsulation (GTP, PPPoE, VLAN, MPLS)

○ Packet Filtering, QoS enforcements, Flow based charging

○ Firewalling, NAT, DPI

● Generating bitstream for Intel PAC N3000
■ vBNG / vEPC components described in P4 language are automatically converted into

bitstream for Intel PAC N3000 by Netcope P4 Cloud

■ No need for FPGA knowledge or FPGA integration

■ Significant shortening of development process

■ Easy customization of supported protocol stack or other features

5
G

 M
o

b
il

e
 N

e
tw

o
rk

Packet manipulation

with Netcope P4

Exact match in

DRAM TCP/UDP checksum

Counters in DRAM

Intel HQoS

integration

vBNG pipeline: it’s open source

● Open Source implementations of vBNG in P4 already exist

○ https://github.com/opencord/p4se

● More than just vBNG
○ ~30 Match Action Tables

○ ~25 Counter arrays

○ Many #ifdefs (INT, IPv6, SPGW, VRF, …)

● Does not cover features outside P4 language spec (QoS)
○ Set as output metadata

https://github.com/opencord/p4se

Results (focused at P4 vBNG on FPGA)

Features

● Input filtering (VLAN)

● BNG encap/decap (IPoE)

● ACL

● Forwarding (incl MPLS, VLAN)

Throughput

● 100 Gbps (Intel N3000 platform)

○ 80 Gbps (incl. Intel HQoS)

What is limited by what?

FPGA logic
● Number of tables

● Ternary table size/key width

FPGA memory
● LPM/Exact table size

● Counters

Off-chip memory
● Exact table size

● Counters

● Throughput

Leveraging Intel PAC N3000 assets

● Using external on board components from P4 pipeline to create complex and

high performance vBNG / vEPC solutions

■ Using External DDR4 Memories

○ To support large number of subscribers

■ Integration of Intel HQoS

○ Possibility to use 3rd Party IP cores

■ Providing access to custom search engines

○ Optimised algorithms (not covered by P4 specification)

■ Feature utilisation of Intel XL710 chip

○ DPDK, Virtual Functions, Filtering

Segment Routing (SRv6) on Intel PAC N3000

● SRv6 functions written in P4 language
■ Actions performed in SRv6 function are mapped to constructs of P4 language

○ Parsing of IPv6 extension headers (segments) covered by P4 parser

○ Encapsulation / Decapsulation covered by P4 functions for adding / removing headers

○ Packet forwarding covered by P4 match & action tables

● Generating bitstream for Intel PAC N3000
■ SRv6 functions described in P4 language are automatically converted into bitstream for Intel

PAC N3000 by Netcope P4 Cloud

■ No need for FPGA knowledge or FPGA integration

■ Significant shortening of development process

Segment Routing (SRv6) on Intel PAC N3000

● Netcope P4 enables SR(v6) in dataplane
■ Netcope P4 is a framework for customization of packet forwarding plane with high level

language for FPGA-based products. It targets Intel’s FPGA-accelerated network adapters.

■ Packet processing speed of FPGA (up to 100 Gbps line rate)

● The Netcope P4 consists of

■ High level language (P4) to FPGA compiler

○ Pre-build high-performance components

■ C language library (API) + software tool for configuration

■ Documentation (sample applications included)

P4 Program

// Rewrites destination IPv6 address

action rewrite() {

// Rewrite the destination IPv6

// address with the last IPv6 segment

modify_field(ipv6.dstAddr,lastSeg.segVal);

add_to_field(ipv6_ext.next_seg,-1)

}

// Only default rule with action rewrite

table tab_rewrite {

actions {

rewrite;

}

}

#define PROTOCOL_IPV6 0x86dd

#define PROTOCOL_V6EXT 0x2B

header ethernet_t ethernet_0;

header ipv6_t ipv6;

// Ethernet parsing

parser parse_ethernet {

extract(ethernet_0);

return select(latest.etherType) {

PROTOCOL_IPV6

: parse_ipv6;

default

: ingress;

}

}

// IPv6 parsing

parser parse_ipv6 {

extract(ipv6);

return select(latest.nextHead) {

PROTOCOL_V6EXT

: parse_ext;

default

: ingress;

}

}

SRv6 implementation (P4 vs. HDL)

Netcope P4 Development Cycle (5 days, 370 lines of code*)

HDL Development Cycle (52 days, 10k+ lines of code*)

Total 5 days, >10x improvement

Extensible code, 390 lines, >80x improvement

(* 36 185 lines of VHDL generated by Netcope P4 compiler internally, not including existing library of

standard modules, FIFOs etc.)

Thank you for your attention.

www.netcope.com
Find us.

Q&As

